Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 696
Filter
Add more filters

Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 227, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381223

ABSTRACT

The extracellular heteropolysaccharide xanthan, synthesized by bacteria of the genus Xanthomonas, is widely used as a thickening and stabilizing agent across the food, cosmetic, and pharmaceutical sectors. Expanding the scope of its application, current efforts target the use of xanthan to develop innovative functional materials and products, such as edible films, eco-friendly oil surfactants, and biocompatible composites for tissue engineering. Xanthan-derived oligosaccharides are useful as nutritional supplements and plant defense elicitors. Development and processing of such new functional materials and products often necessitate tuning of xanthan properties through targeted structural modification. This task can be effectively carried out with the help of xanthan-specific enzymes. However, the complex molecular structure and intricate conformational behavior of xanthan create problems with its enzymatic hydrolysis or modification. This review summarizes and analyzes data concerning xanthan-degrading enzymes originating from microorganisms and microbial consortia, with a particular focus on the dependence of enzymatic activity on the structure and conformation of xanthan. Through a comparative study of xanthan-degrading pathways found within various bacterial classes, different microbial enzyme systems for xanthan utilization have been identified. The characterization of these new enzymes opens new perspectives for modifying xanthan structure and developing innovative xanthan-based applications. KEY POINTS: • The structure and conformation of xanthan affect enzymatic degradation. • Microorganisms use diverse multienzyme systems for xanthan degradation. • Xanthan-specific enzymes can be used to develop xanthan variants for novel applications.


Subject(s)
Dietary Supplements , Microbial Consortia , Polysaccharides, Bacterial , Hydrolysis , Mutagenesis, Site-Directed
2.
Int J Biol Macromol ; 262(Pt 1): 129776, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281532

ABSTRACT

Kinnow mandarin is an important citrus fruit that undergoes various postharvest qualitative losses. Therefore, the present study aimed to investigate the effect of polysaccharide-based xanthan gum (XG) coatings and lemongrass essential oil (LG) on the nutritive quality of Kinnow mandarins stored at 5-7 °C, 90-95 % RH for 75 days. The results revealed that in comparison to control the coatings maintained the fruit titratable acidity (TA), soluble solid content (SSC), ascorbic acid (AsA) content, total flavonoid content (TFC), and juice content, along with reduced weight loss and spoilage incidence. The coated fruits also exhibited higher sensory quality, total antioxidant activity (TAA), and activities of enzymes; catalase (CAT), peroxidase (POD), and phenylalanine ammonia-lyase (PAL). At the end of storage, the fruits coated with XG 1.0 % + LG 1.0 % exhibited maximum TA (0.69 %), AsA content (203.5 mg L-1), and TFC (0.21 mg g-1) with minimum weight loss (7.57 %) and spoilage (3.01 %) and SSC (11.87 %). The scanning electron microscopic (SEM) images of the coated fruits also exhibited smooth surfaces with closed stomata pores. Overall, XG 1.0 % + LG 1.0 % proved as a potential postharvest treatment for maintaining the nutritive quality of Kinnow under low-temperature storage.


Subject(s)
Antioxidants , Fruit , Plant Oils , Polysaccharides, Bacterial , Terpenes , Humans , Antioxidants/pharmacology , Fruit/chemistry , Food Preservation/methods , Temperature , Ascorbic Acid/analysis , Flavonoids/pharmacology , Weight Loss
3.
Food Res Int ; 177: 113836, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225113

ABSTRACT

An acidic beverage was formulated with xanthan gum (XG), pectin (P) and brewer spent grain (BSG) peptides with antioxidant and antihypertensive properties. The impact of hydrocolloids levels on peptide bioaccessibility was studied. Peptides were obtained from BSG using Purazyme and Flavourzyme enzymes. BSG peptides were fractionated by ultrafiltration (UF) and four fractions were obtained: F1 (>10 kDa), F2 (10-5 kDa), F3 (1-5 kDa), and F4 (<1 kDa). F3 showed the highest protein purity, ferulic acid content, proportion of amphipathic peptides, and bioactive properties (ABTS+ radical scavenging and ACE-I inhibitory activity). The identified peptides from F3 by tandem mass spectrometry were 138. In silico analysis showed that 26 identified peptides had ABTS+ inhibitory activity, while 59 ones presented good antihypertensive properties. The effect of XG and P levels on bioaccessibility of F3 peptides in the formulated beverages was studied by a central composite experimental design. It was observed that F3 peptides interacted with hydrocolloids by electrostatic forces at pH of formulated beverages. The addition of hydrocolloids to formulation modulated the release of the antioxidant peptides and protected the degradation of ACE-I inhibitory peptides from F3 during simulated gastrointestinal digestion. Finally, the level of hydrocolloids that produced intermediate viscosities in the formulated beverages improved the bioaccessibility of the F3 peptides.


Subject(s)
Antihypertensive Agents , Antioxidants , Benzothiazoles , Polysaccharides, Bacterial , Sulfonic Acids , Antihypertensive Agents/chemistry , Antioxidants/analysis , Hydrolysis , Angiotensin-Converting Enzyme Inhibitors/chemistry , Pectins/analysis , Protein Hydrolysates/chemistry , Peptides/chemistry , Edible Grain/chemistry , Colloids/analysis
4.
Food Funct ; 15(4): 1938-1947, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38269604

ABSTRACT

This study evaluates the functional characteristics of the exopolysaccharide (EPS) extracts produced by various strains of Lactiplantibacillus pentosus (LPG1, 119, 13B4, and Lp13) and Lactiplantibacillus plantarum (Lp15) isolated from table olives. None of the EPS crude extracts showed cytotoxicity when administered to THP-1 human macrophage cells at dosages ranging from 6.25 to 50 µg mL-1. Many exhibited anti-inflammatory properties (reduction of pro-inflammatory cytokines TNF-α and IL-6 production) and antioxidant activity (reduction of ROS%) when macrophages were stimulated with Escherichia coli lipopolysaccharide. Notably, the EPS extract produced by the L. pentosus LPG1 strain had the best results corroborated by western blot immune analysis for differential expression of COX-2, Nrf-2, and HO-1 proteins, with the most significant antioxidant and anti-inflammatory response observed at a dosage of 50 µg mL-1. Chemical analysis revealed that the EPS extract produced by this strain contains a heteropolymer composed of mannose (35.45%), glucose (32.99%), arabinose (17.93%), xylose (7.48%), galactose (4.03%), rhamnose (1.34%), and fucose (0.77%). Finally, we conducted response surface methodology to model the EPS extract production by L. pentosus LPG1 considering pH (3.48-8.52), temperature (16.59-33.41 °C) and salt concentration (0.03-8.77% NaCl) as independent variables. The model identified linear effects of salt and pH and quadratic effects of salt as significant terms. The maximum EPS extract production (566 mg L-1) in a synthetic culture medium (MRS) was achieved at pH 7.5, salt 7.0%, and a temperature of 20 °C. These findings suggest the potential for novel applications for the EPS produced by L. pentosus LPG1 as nutraceutical candidates for use in human diets.


Subject(s)
Olea , Polysaccharides, Bacterial , Humans , Polysaccharides, Bacterial/chemistry , Dietary Supplements , Culture Media , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents
5.
Int J Pharm ; 645: 123435, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37741560

ABSTRACT

A recommended first-line acute bacterial rhinosinusitis (ABR) treatment regimen includes a high dose of orally administered amoxicillin, despite its frequent systemic adverse reactions coupled with poor oral bioavailability. Therefore, to overcome these issues, nasal administration of amoxicillin might become a potential approach for treating ABR locally. The present study aimed to develop a suitable carrier system for improved local nasal delivery of amoxicillin employing the combination of albumin nanoparticles and gellan gum, an ionic-sensitive polymer, under the Quality by Design methodology framework. The application of albumin nanocarrier for local nasal antibiotic therapy means a novel approach by hindering the nasal absorption of the drug through embedding into an in situ gelling matrix, further prolonging the drug release in the nasal cavity. The developed formulations were characterized, including mucoadhesive properties, in vitro drug release and antibacterial activities. Based on the results, 0.3 % w/v gellan gum concentration was selected as the optimal in situ gelling matrix. Essentially, each formulation adequately inhibited the growth of five common nasal pathogens in ABR. In conclusion, the preparation of albumin-based nanoparticles integrated with in situ ionic-sensitive polymer provides promising ability as nanocarrier systems for delivering amoxicillin intranasally for local antibiotic therapy.


Subject(s)
Amoxicillin , Nanoparticles , Serum Albumin, Bovine , Administration, Intranasal , Nasal Mucosa , Anti-Bacterial Agents , Polymers , Gels , Drug Delivery Systems , Polysaccharides, Bacterial
6.
Planta Med ; 89(15): 1483-1492, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37647915

ABSTRACT

Immulina is a commercially available extract of Arthrospira platensis enriched with bacterial lipoproteins that acts as a potent Toll-like receptor 2 agonist. However, the immunostimulatory effect of Immulina is not well understood in vivo. Here, to devise an Immulina formulation suitable for in vivo oral gavage dosing, Immulina nanosuspension was prepared and freeze-dried to yield lyophilized nano-Immulina, which had an average particle size of around 300 nm and fully retained the bioactivity as a Toll-like receptor 2 agonist. Compared to the regular Immulina powder, lyophilized nano-Immulina notably accelerated the dissolution in aqueous media. Immulina nanosuspension was found to stimulate the production of proinflammatory cytokines in murine bone marrow-derived dendritic cells and macrophages. The immune response to Immulina was investigated in healthy mice by longitudinally monitoring the phagocytic activity of circulating neutrophils as a surrogate marker. Following daily oral ingestion of Immulina nanosuspension (10 mg/mouse/day), the phagocytic activity of circulating neutrophils was significantly elevated, suggesting an important mechanism for Immulina to enhance innate immunity.


Subject(s)
Nanoparticles , Toll-Like Receptor 2 , Mice , Animals , Polysaccharides, Bacterial , Macrophages , Adjuvants, Immunologic/pharmacology , Particle Size , Solubility
7.
Int J Biol Macromol ; 243: 125092, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37247706

ABSTRACT

Scientists from across the world are being inspired by recent development in polysaccharides and their use in medical administration. Due to their extraordinary physical, chemical, and biological characteristics, polysaccharides are excellent materials for use in medicine. Acidic polysaccharides, which include Pectin, Xanthan gum, Carrageenan, Alginate, and Glycosaminoglycan, are natural polymers with carboxyl groups that are being researched for their potential as drug delivery systems. Most publications do not discuss how the different polysaccharides interact structurally in terms of drug delivery, which limits the scope of their use. The purpose of this review is to inform readers about the structural activity correlations between acidic polysaccharides, their different modification process and effects of combination of various acidic polysaccharides which have been used in drug delivery systems and expanding their potential applications, and bringing new perspectives to the fore.


Subject(s)
Polysaccharides, Bacterial , Polysaccharides , Polysaccharides/chemistry , Polysaccharides, Bacterial/chemistry , Drug Delivery Systems , Alginates/chemistry , Carrageenan , Pectins , Polymers/chemistry
8.
Food Chem ; 403: 134320, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36162267

ABSTRACT

A novel film composed of Polygonatum cyrtonema extracts (PCE), xanthan gum (XG), flaxseed gum (FG) and carboxymethyl cellulose (CMC) was prepared (XFCP). Addition of PCE has decreased the light transmittance, while enhanced the UV blocking performance, antioxidant activity, tensile strength and elongation at break of XFCP due to polysaccharides, polyphenols, and flavonoid in PCE. Structural analyses by FTIR and XRD indicated the hydrogen-bonding interaction between PCE, XG, FG and CMC. It was found that compared with the control sample, XFCP2.5% with the lowest WVTR was able to prolong the shelf life of mango. The overall quality of mango was also improved in terms of lower decay rate, weight loss rate, total soluble solid, and polyphenol oxidase, higher titratable acidity, Vc, and superoxide dismutase than control mango upon 8 days of storage. This effectively expanded the application of PCE into food packaging in addition to merely as Chinese traditional medicine herbs.


Subject(s)
Flax , Mangifera , Polygonatum , Carboxymethylcellulose Sodium/chemistry , Antioxidants/chemistry , Polysaccharides, Bacterial/chemistry , Food Packaging , Plant Extracts
9.
Food Chem ; 409: 135289, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36586260

ABSTRACT

Different xanthan gum (XG) concentrations on the rheological/texture properties of Pickering emulsion (PE) gel stabilized by tea protein/xanthan gum (TP/XG) were studied to achieve an ink feasible for 3D printing. Afterwards, the effects of 3D printing and digestion process on the viability of probiotics were studied when encapsulated in the PE gel. Results indicated that gel strength, stability, storage modulus (G') and loss modulus (G″) increased as XG concentration increased. Nozzle diameter and printing temperature of 45 and 55℃ had no significant effect on probiotic's viability, but printing temperature of 65℃ reduced viable probiotics from 8.07 to 6.59 log CFU/g. No significant change of probiotics viability in 3D printed samples was observed during 11-day storage at 4℃. PE gel encapsulated probiotic's viability was significantly improved under heat treatment and simulated gastrointestinal environment. This study gives insights on the production of 3D printed foods using PE gel incorporating probiotics.


Subject(s)
Polysaccharides, Bacterial , Printing, Three-Dimensional , Emulsions , Tea , Rheology
10.
World J Microbiol Biotechnol ; 39(2): 49, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36542187

ABSTRACT

Microbial exopolysaccharides (EPSs) are mostly produced by bacteria and fungi and have potential use in the production of biomedical products such as nutraceuticals and in tissue engineering applications. The present study investigated the in vitro biological activities and in vivo wound healing effects of EPSs produced from a Sclerotium-forming fungus (Sclerotium glucanicum DSM 2159) and a yeast (Rhodosporidium babjevae), denoted as scleroglucan (Scl) and EPS-R, respectively. EPS yields of 0.9 ± 0.07 g/L and 1.11 ± 0.4 g/L were obtained from S. glucanicum and R. babjevae, respectively. The physicochemical properties of the EPSs were characterized using infrared spectroscopy and scanning electron microscopy. Further investigations of the biological properties showed that both EPSs were cytocompatible toward the human fibroblast cell line and demonstrated  hemocompatibility. Favorable wound healing capacities of the EPSs (10 mg/mL) were also established via in vivo tests. The present study therefore showed that the EPSs produced by S. glucanicum and R. babjevae have the potential use as biocompatible components for the promotion of dermal wound healing.


Subject(s)
Ascomycota , Wound Healing , Humans , Bacteria/metabolism , Ascomycota/metabolism , Dietary Supplements , Cell Line , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/metabolism
11.
Carbohydr Polym ; 297: 120014, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36184137

ABSTRACT

Ocular drug delivery is a significantly challenging task due to the presence of various anatomical and physiological barriers in the eye. Naturally available polysaccharides, when used as drug vehicles provide increased retention time, bioavailability, and penetration due to their unique mucoadhesive and charge-possessing nature. This review discusses the polysaccharide-based drug delivery system for the eye. Polysaccharides like alginic acid, cellulose derivatives, chitosan, pectin, xanthan gum, gellan gum, and hyaluronic acid are reviewed in this report. Additionally, emphasis is given to some of the recently investigated polymers such as sugarcane bagasse cellulose, a polysaccharide extracted from the seeds of Manilkara zapota, and Tremella fuciformis polysaccharide as drug vehicles for effective ocular drug delivery. This review also provides insight on clinical status and FDA-approved polysaccharides for ophthalmic delivery of therapeutics.


Subject(s)
Chitosan , Saccharum , Alginic Acid , Cellulose , Drug Delivery Systems , Excipients , Hyaluronic Acid , Pectins , Polymers , Polysaccharides , Polysaccharides, Bacterial
12.
Appl Microbiol Biotechnol ; 106(21): 7173-7185, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36156161

ABSTRACT

A synergistic approach using cultivation methods, chemical, and bioinformatic analyses was applied to explore the potential of Pseudoalteromonas sp. S8-8 in the production of extracellular polymeric substances (EPSs) and the possible physiological traits related to heavy metal and/or antibiotic resistance. The effects of different parameters (carbon source, carbon source concentration, temperature, pH and NaCl supplement) were tested to ensure the optimization of growth conditions for EPS production by the strain S8-8. The highest yield of EPS was obtained during growth in culture medium supplemented with glucose (final concentration 2%) and NaCl (final concentration 3%), at 15 °C and pH 7. The EPS was mainly composed of carbohydrates (35%), followed by proteins and uronic acids (2.5 and 2.77%, respectively) and showed a monosaccharidic composition of glucose: mannose: galactosamine: galactose in the relative molar proportions of 1:0.7:0.5:0.4, as showed by the HPAE-PAD analysis. The detection of specific molecular groups (sulfates and uronic acid content) supported the interesting properties of EPSs, i.e. the emulsifying and cryoprotective action, heavy metal chelation, with interesting implication in bioremediation and biomedical fields. The analysis of the genome allowed to identify a cluster of genes involved in cellulose biosynthesis, and two additional gene clusters putatively involved in EPS biosynthesis. KEY POINTS: • A cold-adapted Pseudoalteromonas strain was investigated for EPS production. • The EPS showed emulsifying, cryoprotective, and heavy metal chelation functions. • Three gene clusters putatively involved in EPS biosynthesis were evidenced by genomic insights.


Subject(s)
Metals, Heavy , Pseudoalteromonas , Pseudoalteromonas/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Sodium Chloride/metabolism , Polysaccharides, Bacterial/metabolism , Galactose/metabolism , Mannose/metabolism , Antarctic Regions , Uronic Acids/metabolism , Metals, Heavy/metabolism , Sulfates/metabolism , Glucose/metabolism , Carbon/metabolism , Galactosamine , Cellulose/metabolism
13.
Chin J Nat Med ; 20(8): 633-640, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36031235

ABSTRACT

The ribose and phosphorus contents in Haemophilus influenzae type b (Hib) capsular polysaccharide (CPS) are two important chemical indexes for the development and quality control of Hib conjugate vaccine. A quantitative 1H- and 31P-NMR method using a single internal standard was developed for simultaneous determination of ribose and phosphorus contents in Hib CPS. Hexamethylphosphoramide (HMPA) was successfully utilized as an internal standard in quantitative 1H-NMR method for ribose content determination. The ribose and phosphorus contents were found to be affected by the concentration of polysaccharide solution. Thus, 15-20 mg·L-1 was the optimal concentration range of Hib CPS in D2O solution for determination of ribose and phosphorus contents by this method. The ribose and phosphorus contents obtained by the quantitative NMR were consistent with those obtained by traditional chemical methods. In conclusion, this quantitative 1H- and 31P-NMR method using a single internal standard shows good specificity, accuracy and precision, providing a valuable approach for the quality control of Hib glycoconjugate vaccines.


Subject(s)
Haemophilus Vaccines , Haemophilus influenzae type b , Phosphorus , Polysaccharides, Bacterial , Ribose
14.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012520

ABSTRACT

Nowadays, antibiotic resistance is a major public health problem. Among staphylococci, infections caused by Staphylococcus epidermidis (S. epidermidis) are frequent and difficult to eradicate. This is due to its ability to form biofilm. Among the antibiotic substances, nanosilver is of particular interest. Based on this information, we decided to investigate the effect of nanosilver on the viability, biofilm formation and gene expression of the icaADBC operon and the icaR gene for biofilm and non-biofilm S. epidermidis strains. As we observed, the viability of all the tested strains decreased with the use of nanosilver at a concentration of 5 µg/mL. The ability to form biofilm also decreased with the use of nanosilver at a concentration of 3 µg/mL. Genetic expression of the icaADBC operon and the icaR gene varied depending on the ability of the strain to form biofilm. Low concentrations of nanosilver may cause increased biofilm production, however no such effect was observed with high concentrations. This confirms that the use of nanoparticles at an appropriately high dose in any future therapy is of utmost importance. Data from our publication confirm the antibacterial and antibiotic properties of nanosilver. This effect was observed phenotypically and also by levels of gene expression.


Subject(s)
Metal Nanoparticles , Staphylococcal Infections , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Biofilms , Gene Expression , Humans , Iron-Dextran Complex , Polysaccharides, Bacterial/metabolism , Silver/metabolism , Silver/pharmacology , Staphylococcal Infections/microbiology , Staphylococcus epidermidis
15.
Article in English | MEDLINE | ID: mdl-35858510

ABSTRACT

Capsular polysaccharides of Streptococcus pneumoniae contain a characteristic mix of monosaccharides in their structure resulting in immunologically distinct serotypes. Pneumococcal capsular polysaccharides include sugars such as hexoses, uronic acids, hexosamines, methyl pentoses, other functional groups are attached to the sugars are N and O-acetyl groups, nitrogen and phosphorus. Most of these components can be quantified using different colorimetric methods. However, available methods for quantifying nitrogen and phosphorus are not sensitive enough and laborious. We report a highly sensitive high-performance anion-exchange chromatography-conductivity detector (HPAEC-CD) method for quantifying nitrogen and phosphorus present in pneumococcal capsular polysaccharides. The method is reliable, robust and reproducible with no interference. The LOQ for nitrogen and phosphorus of 3.125 and 62.5 ng/mL, respectively, is highly critical for estimating low levels of total nitrogen and total phosphorus. We have implemented this method to quantify total nitrogen in Typhoid Vi polysaccharide and phosphorus in Haemophilus influenzae type-b polysaccharide. This method has greater application for quantification of nitrogen and phosphorus present in low concentrations in polysaccharide vaccines/biologicals.


Subject(s)
Nitrogen , Phosphorus , Anions , Chromatography , Monosaccharides , Polysaccharides/analysis , Polysaccharides, Bacterial
16.
Int J Biol Macromol ; 216: 510-519, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35803409

ABSTRACT

The substituents and backbones are two main factors affecting immune activities of polysaccharides. In the present study, we firstly evaluated the immunostimulating effects of phosphorylated, sulfated, H-phosphonated and nitrated derivatives of low-molecular-weight polymannuronate (LPM) and polyguluronate (LPG) on splenocytes and peritoneal macrophages in vitro. The results showed that the phosphate group was the best substituent to enhance the immune activities, and LPG phosphate (LPGP) had much better activity than LPM phosphate (LPMP). Further studies showed that LPGP not only promoted the proliferation of mouse splenocytes in the presence of either LPS or Con A, but also acted as an excellent peritoneal macrophage activator to enhance the cell phagocytosis, energy metabolism, cytokines release and activities of intracellular enzymes. The studies in RAW264.7 cells revealed that LPGP activated the TBK1-IκBα-NF-κB and the TBK1-IRF3 pathway. Moreover, LPGP rescued the immune response in the Cyclophosphamide-treated mice in vivo. In conclusion, LPGP is a potential alginate-based biological response modifier (BRM).


Subject(s)
Adjuvants, Immunologic , Spleen , Adjuvants, Immunologic/metabolism , Adjuvants, Immunologic/pharmacology , Animals , Immunity , Macrophages , Mice , NF-kappa B/metabolism , Phosphates/pharmacology , Polysaccharides, Bacterial/pharmacology
17.
Food Res Int ; 156: 111351, 2022 06.
Article in English | MEDLINE | ID: mdl-35650980

ABSTRACT

In this study, nanoparticles (NPs) prepared with xanthan gum and lysozyme were established as a powerful delivery system for two Se-containing peptides: TSeMMM (STP) and SeMDPGQQ (SHP). NPs-STP and NPs-SHP had relatively small particle sizes (145 nm and 148 nm) and negative zeta potentials (-47 mV and -49 mV). The encapsulation efficiency of NPs-STP and NPs-SHP was determined to be 34.35% and 41.35%, respectively. The stability and antioxidant activity of Se-containing peptides were greatly enhanced due to encapsulation. NPs-STP and NPs-SHP exhibited controlled release of Se-containing peptides under in vitro gastrointestinal conditions. NPs-STP and NPs-SHP showed low toxicity and entered Caco-2 cells through clathrin-mediated endocytosis, contributing to a significant increase in the apparent permeability coefficient of STP (2.19 × 10-6 cm/s) and SHP (2.21 × 10-6 cm/s). Thus, NPs-STP and NPs-SHP are considered promising delivery systems for Se-containing peptides and have good potential applications in the food and pharmaceutical industries.


Subject(s)
Nanoparticles , Selenium , Caco-2 Cells , Humans , Muramidase , Peptides , Polysaccharides, Bacterial
18.
Food Chem ; 393: 133315, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35653998

ABSTRACT

Physicochemical and in vitro protein digestibility of alginate/calcium (AC) restructured pork steak hydrolyzed with bromelain with addition of LA gellan, LM pectin and κ-carrageenan at various concentrations (0.5, 1.0, 1.5 and 2% w/w) was evaluated for masticatory dysfunction people. The AC samples with κ-carrageenan showed the lowest cooking losses and highest water holding capacity (WHC). Moreover, addition of κ-carrageenan showed the highest Kramer shear force (KSF) and higher hardness, cohesiveness, springiness, chewiness, and gumminess, but the adhesiveness value was lower than those of the other treatments. According to SEM, the gel network of AC samples with κ-carrageenan was more clearly than those with the other treatments. FTIR demonstrated that the addition of polysaccharides to AC sample enhanced the hydrogen bonds in the gel system. For in vitro protein digestibility results, addition of 0.5% (w/w) LA gellan and κ-carrageenan samples showed the highest pepsin (73-74%) and trypsin (79-80%) digestibility.


Subject(s)
Pork Meat , Red Meat , Alginates , Animals , Bromelains , Calcium , Carrageenan/chemistry , Chemical Phenomena , Colloids , Humans , Pectins , Polysaccharides, Bacterial , Proteins , Swine
19.
Int J Biol Macromol ; 211: 198-206, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35568150

ABSTRACT

The aim of this work was to develop an edible packaging material with good performance that can be used for fresh-cut vegetables preservation. The xanthan (XG)-hydroxypropyl methylcellulose (HPMC)-tea polyphenols (TP) composite film (XHT) was prepared by adding TP to the composite film-forming solution of XG and HPMC. At optimum TP dosage of 6% (XHT6), the tensile strength and elongation at break were at the maximum. The antioxidant activity and antibacterial properties were also enhanced, demonstrated good inhibitory ability to Staphylococcus aureus. After 8 days, the amount of Vitamin C that was retained by XHT6 was 127.81% and 7.83% higher than unpackaged and XHT0, respectively. Additionally, the MDA content in green peppers were 39.16% and 78.87% higher than that of unpackaged and XHT0, respectively. Practical applications of XHT films in preserving fresh-cut bell peppers had also shown positive results, making it possible as potential food packaging.


Subject(s)
Capsicum , Polyphenols , Food Packaging , Hypromellose Derivatives , Methylcellulose , Polyphenols/pharmacology , Polysaccharides, Bacterial , Tea
20.
AAPS PharmSciTech ; 23(5): 125, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35474400

ABSTRACT

The accumulation of amyloid-beta at the neuronal sites is a major pathological hallmark involved in the etiology of Alzheimer's disease. To reduce the Aß-induced neuronal cytotoxicity, selenium nanoparticles and silymarin were fabricated in a single polysaccharide matrix for dual antioxidant and Aß fibril disaggregation activity. These nanoparticles were further stabilized by an exopolysaccharide xanthan gum. The nanoparticles were fabricated to reduce the amyloid-induced cytotoxicity in SH-SY5Y cells. A three-step method employing redox reaction of sodium selenite and ascorbic acid has been adopted for the synthesis of selenium nanoparticles. Consequently, xanthan gum powder was added to impart stability to the nanocarriers. The nanoparticles exhibited a particle size of 119.2 ± 2.8 nm, zeta potential of - 35.4 ± 3.8 mV, and % EE of 87.7 ± 2.23. HR-TEM with EDX analysis confirmed the presence of spherical nanoparticles. An in vitro drug release study exhibited 89.33 ± 5.4% release of silymarin from nanocarriers and was able to scavenge 90% free radicals of DPPH reagent. The thioflavin T (ThT) fibrillation kinetics study showed that the nanoparticles elicited maximum disaggregation of Aß fibrils that was depicted by the quenched fluorescence intensity signal. The cell viability results revealed that the highest neuroprotection activity was observed in the cell group treated with SLY-XG-Se against Aß 1-42-induced toxicity. The nanoparticles were able to internalize in SH-SY5Y cells. Our findings showed that the nanocarrier elicited anti-aggregation efficacy in neuronal cell lines and mitigated the Aß-induced cytotoxicity, which represents the prospects of neuroprotection involved in the therapeutics of AD.


Subject(s)
Selenium , Silymarin , Amyloid , Amyloid beta-Peptides/metabolism , Polysaccharides, Bacterial , Silymarin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL